Электрические прямоугольные соединители. Основные аспекты теории неподвижного электрического контакта

№ 4’2008
PDF версия
В данной статье рассмотрены процессы, происходящие в неподвижных электрических контактах, а также теория электрического сопротивления, тепловые явления, деформация материала и физические и химические процессы, относящиеся к контактам.

Александр Сафонов
Леонид Сафонов

В данной статье рассмотрены процессы, происходящие в неподвижных электрических контактах, а также теория электрического сопротивления, тепловые явления, деформация материала и физические и химические процессы, относящиеся к контактам.

Введение в теорию неподвижного электрического контакта

Рабочим состоянием контактов электрического соединителя является их замкнутое состояние, то есть когда «вилка» и «розетка» электрического соединителя находятся в сочлененном состоянии в течение длительного периода времени. Расчленение соединителей, как правило, производится в обесточенном состоянии при проведении регламентных работ в РЭА, замене блоков, выводе аппаратуры или отдельных ее систем из эксплуатации и т. п.

Понятие «электрический контакт» означает надежное соединение двух проводников, позволяющих проводить электрический ток. Элементы проводников, посредством которых они соединяются, называют контактными элементами или контактами. Положительные или отрицательные контакты называют соответственно анодом или катодом (это имеет значение только для постоянного тока). Если контакты не соприкасаются друг с другом, то принято говорить о разомкнутом контакте. Зазор между контактами — кратчайшее расстояние между их поверхностями.

Для обеспечения нормального прохождения электрического тока через контактную пару контакты в этой паре должны прижиматься друг к другу с определенной силой. Сила, с которой контакты прижимаются друг к другу, есть механическое контактное усилие или просто усилие Р. Поверхности контактов не могут быть абсолютно гладкими, и, если представить, что контакты выполнены из идеально твердого материала, то соприкосновение их поверхностей происходит не более чем в трех точках. Но так как реальный материал контактов не является абсолютно твердым, то под действием давления в материале всегда возникают в точках контакта пластические или упругие деформации. Точки соприкосновения контактов сплющиваются, образуя небольшие поверхности, содержащие контактные пятна. Сумма всех этих поверхностей, воспринимающих усилие, составляет поверхность Ав , в которой устанавливается давление Р. Поверхность контактов, по которой теоретически планируется их соприкосновение, принято называть кажущейся контактной поверхностью — Аа . В реальных условиях поверхность, воспринимающая усилие, — Ав—в сотни раз меньше кажущейся контактной поверхности Аа .

Зависимость между воспринимающей усилие контактной поверхностью Ав , контактным усилием Р и средним давлением ? можно определить по следующей формуле:

Давление в различных точках контактной поверхности неодинаково и может вызывать в одних точках упругую деформацию, в других пластическую.

Поверхность, воспринимающая усилие, состоит из следующих участков (рис. 1):

  • участка с металлическим контактом, в котором электрический ток протекает без заметного переходного сопротивления;
  • участка с квазиметаллическим контактом — поверхности, покрытой тонкой пленкой, которая пропускает электрический ток благодаря туннельному эффекту;
  • участка, покрытого мономолекулярными пленками, которые практически играют роль изоляторов.
Кажущаяся контактная поверхность

Поверхности, проводящие электрический ток, принято называть а-пятнами. Сумма площадей а-пятен составляет контактную поверхность — Ас.

Соотношение между этими поверхностями различно, но может случиться, что Аа = Ав = Ас. Очень трудно определить Ав и Ас в тех случаях, когда они малы по сравнению с Аа.

Реальные условия эксплуатации электрических соединителей предполагают ограничения, особенно в отношении чистоты поверхности контактных элементов, ввиду того, что они длительное время находятся под влиянием воздуха. Сухие поверхности неблагородных металлов, таких как медь, латунь или бронза, обычно покрываются видимыми пленками потускнения толщиной более 100 Е, в то время как благородные металлы покрываются адгезионными пленками толщиной менее 30 Е, через которые могут проникать токи благодаря туннельному эффекту.

Если пленки контактов остаются неповрежденными, то они оказывают значительное влияние на состояние и поведение контакта: видимые пленки потускнения практически являются изоляторами; тонкие пассивирующие пленки оказывают лишь незначительное ослабляющее действие в части переходного сопротивления и делают контакт чувствительным к колебаниям и вибрациям. Однако пленки обычно в процессе контактирования, при достаточном контактном давлении, повреждаются и разрушаются, способствуя тем самым возникновению металлических контактных пятен — а-пятен.

Необходимо отметить, что разрыв пленки имеет важное значение для снижения переходного сопротивления. Впервые факт разрушения пленки был установлен в 1939 году. До этого существовало ошибочное мнение о том, что хорошая проводимость медных и серебряных контактов обусловлена значительной проводимостью окислов.

Согласно теории, для разрыва поверхностных пленок необходимо, чтобы контактное давление достигло предела пластической деформации в местах повреждения. Разрывы пленок протекают тем легче, чем выше среднее давление в контактной паре и чем мягче металл.

В случае чистого металлического контакта, то есть когда нет окисных пленок на контактах, контактное сопротивление R является только сопротивлением стягивания. Если же имеется пленка, то контактное сопротивление R состоит из сопротивлений стягивания обоих контактов R1 и R2 и сопротивления пленки Rf. Таким образом:

Сопротивления R1 и R2 равны соответвенно ρ1/na и ρ2/na, где а — средний размер а-пятна; n — число пятен; ρ1 и ρ2 — удельное сопротивление материалов контактов.

Выражение Rf в случае использования проводящей пленки, равномерно распределенной по поверхности контакта, имеет вид:

где σ — сопротивление 1 см² этой пленки; А — поверхность контакта.

Если σ (сопротивление пленки) неодинаково по всей ее поверхности, то будет справедливо уравнение:

Обозначив через 1/Rf удельную проводимость пленки, а через S ее толщину, будем иметь:

Установлено, что для получения воспроизводимой величины сопротивления при небольших контактных усилиях для контактной пары, находившейся определенное время в разомкнутом положении, необходимо предварительно подвергнуть контакты небольшой вибрации (то есть подвергнуть так называемому искусственному старению) и выдержать в покое в течение продолжительного времени. Старение контактов позволяет механически разрушить окисные пленки и обеспечить возникновение контактных а-пятен.

Контактная поверхность как функция усилия, упругости и пластичности материала контактов

Деформация, которая определяет воспринимающую усилие поверхность Ав, упругая вплоть до давления, приближающего к твердости. Твердость Н, значение которой применяют для вычисления касающихся контактов, определяется как среднее давление при испытаниях с помощью шарика, при условии, что удельная глубина больше 0,02. Эту твердость принято называть контактной.

Как установили Р. Хольм, Е. Хольм и Е.Шуберт, среднее давление ρ – на поверхности отпечатка удовлетворяет уравнению:

где Am — проекция отпечатка.

Из условий пластической деформации установлено, что ρ — функция удельной глубины Д отпечатка:

причем r — радиус шарика, а d — глубина отпечатка перед снятием усилия с шарика.

Измеряют (d), поскольку прямое измерение d является сложным, так как

Д. Табор установил, что контактная твердость равна твердости, измеряемой методом вдавливания шарика:

где ρ измеряется для времени нагружения, равного 1 мин. Это сделано для того, чтобы исключить усложнения, связанные с ползучестью.

Было бы неправильно говорить о каком-либо определенном верхнем пределе давления для упругой деформации, поскольку в действительности решающим фактором является внутреннее напряжение, а не давление. Фактически среднее давление, при котором в контактах начинается пластическая деформация, зависит от начальной формы контактирующих поверхностей. Поэтому очень трудно вывести общие формулы, описывающие зависимость контактной поверхности от усилия. Для частных случаев можно получить зависимости, позволяющие вести расчеты, дающие некоторый ориентир.

Упругая деформация

В тех случаях, когда деформация является чисто упругой и начальные поверхности контактов определяются только двумя выступами, применимы классические формулы Герца. Площади соприкосновения будут эллиптическими или круглыми. Рассмотрим круглые, так как для большинства конструкций контактных пар прямоугольных электрических соединителей этот вид площади соприкосновения реален. Данный вид соприкосновения возникает между сферой и плоскостью, между двумя сферами, изготовленными из одного материала и имеющими одинаковые диаметры. Радиус (a) контактной поверхности Ав получим из уравнения:

где индексы 1 и 2 относятся к соответствующим контактирующим элементам; r — радиус кривизны (положительный для выпуклых и отрицательный для вогнутых поверхностей); σ — коэффициент Пуассона, выражающий отношение поперечной и продольной деформации при воздействии продольного усилия; Е — модуль упругости.

Для сферического контакта с плоскостью из материала, у которого σ = 0,3 (что приблизительно соответствует коэффициентам Пуассона никеля, меди, бронзы и латуни):

В этом случае в точке контакта на расстоянии х от центра Ав давление равно:

В центре давление — ρ — достигает максимума:

Любая деформация, упругая или пластическая, приводящая к образованию Ав = πа², сближает центры сфер на величину:

где y — расстояние между центрами контактных элементов.

Пластическая деформация

При возрастании усилия Р степень гетерогенной деформации возрастает, и после того, как она достигнет предела упругости, начинается остаточная деформация в виде пластической текучести или разрушения. На рис. 2 показано, каким образом шарик, прижимаемый к поверхности, производит в плоском теле пластическую деформацию. Такая деформация начинается на периферии отпечатка и с возрастанием усилия распространяется на весь отпечаток, а также в прилегающий материал. В течение этого процесса среднее давление в отпечатке увеличивается с ростом Р. Вначале Р возрастает быстро, а затем его рост замедляется. Когда в процессе медленного изменения глубина отпечатка достигает определенного значения (Д = 0,02), среднее давление имеет величину, которую называют контактной твердостью Н. В этом случае общая поверхность, воспринимающая усилие, удовлетворяет уравнению:

Отпечаток шарика

Однако среднее давление ρ будет меньше Н. Так будет либо потому, что в некоторой части контактной поверхности существуют такие пластические деформации, которые характеризуются удельной глубиной Д < 0,02, либо просто потому, что участки контактных поверхностей имеют упругие напряжения. В этом случае:

Опыты показывают, что коэффициент ζ обычно находится в пределах 1/3 < ζ < 1.

Контактное сопротивление

Термин «контактное сопротивление» был введен после того, как стало известно, что поверхность металлического контакта — это источник исследуемого сопротивления. Действительно, то, что измеряется как контактное сопротивление R, всегда принимают за сопротивление стягивания Rc , которое является следствием стягивания (сужения) линий тока к маленькому проводящему пятну контакта. Области стягивания есть на обоих контактных элементах.

Теоретически можно предположить, что нарушение порядка в кристаллической решетке контакта вызывает отражение электронов и образует переходное сопротивление. Однако величина такого сопротивления мала и практического интереса не представляет. При чистых контактных поверхностях разность:

Мы установили, что Ав очень мала, и только ее часть может пропускать электрический ток. Во всех случаях линии тока должны стягиваться вместе, проходя через ограниченные площадки кажущейся контактной поверхности — Аа, вызывающие увеличение сопротивления по сравнению со случаем полной проводимости. Это увеличение сопротивления называется сопротивлением стягивания.

Если измеренное сопротивление окажется больше рассчитанного, то можно заключить, что поверхность контактов покрыта пленкой, создающей дополнительное сопротивление. Термин «контактное сопротивление» сохраняется независимо от того, является ли оно чистым сопротивлением стягивания или же имеется пленка, которая вносит на проводящей поверхности дополнительное сопротивление.

Предположим, что оба контакта из одного материала, что их поверхности круглые и симметричные и что термоэлектрический эффект отсутствует. Эта модель изображена на рис. 3.

Упрощенная модель стягивания линий тока

Контактная поверхность представлена сферой К бесконечной проводимости, радиус которой (в) значительно меньше радиуса (a) предполагаемой реальной поверхности. Линии тока проходят радиально и симметрично распределяются вокруг сферы К, образуя эквипотенциальные поверхности в виде полусфер, концентричных К.

Определим сопротивление стягивания одного из контактов. Сопротивление dR между полусферой радиусов r и r+dr равно:

где ρ — удельное сопротивление материала контактов. Интегрируем по полусфере, которая проходит через точку, где снимается потенциал для измерения контактного напряжения. Радиус В этой полусферы значительно больше (в). Доля, вносимая более отдаленными участками, невелика. Поэтому за верхний предел можно принять бесконечность, и тогда сопротивление стягивания одного контакта будет:

Полное сопротивление стягивания R двух контактов равно удвоенной величине сопротивления стягивания одного контакта. Таким образом:

Уравнение (21) получено на основании искусственной модели и поэтому является приближенным. Действительную величину сопротивления стягивания круглой контактной поверхности радиуса (a) можно представить как:

В уравнениях (21) и (22) определено одно и то же сопротивление R, а потому справедливо равенство:

Тепловое сопротивление области стягивания

Максвелл установил, что, во-первых, температура в теории тепловых потоков играет ту же роль, что и электрический потенциал в теории электрического тока, и во-вторых, что тепловое сопротивление может быть математически выражено точно так же, как электрическое сопротивление, с той лишь разницей, что вместо ρ должна стоять величина 1/k, где k — теплопроводность.

Электрическое сопротивление между двумя эквипотенциальными поверхностями есть:

а соответствующее термическое сопротивление равно:

Если обозначить суммарное сопротивление стягивания через R, то в каждом контакте в середине элемента выделится тепла — 1/2RI² (Вт) и средний период температуры будет:

Суммируя эти приращения, получим общее увеличение температуры, или температуру перегрева Θ контактной поверхности, которая отсчитывается от средней температуры контактного элемента:

Соответственно для контактной пары температура перегрева будет:

Влияние температуры и продолжительности замыкания контактов на величину контактной поверхности и величину переходного сопротивления

Установлено, что с течением времени переходное сопротивление в контактной паре при определенных условиях уменьшается. Основная причина этого уменьшения — снижение твердости материала в зоне контакта, за счет термодиффузии атомов и увеличения контактной поверхности Ас. Атомная решетка «уплотненного» металла в зоне контакта обладает избытком энергии и стремится к однородности структуры, которой обладает более «мягкое» состояние металла. Снижение твердости происходит из-за диффузии, которая является результатом теплового движения атомов. Процесс диффузии атомов при низких температурах, например при комнатной, идет сравнительно медленно, но он ускоряется после прохождения определенного температурного порога. Если диффузия имеет место только в пределах кристаллитов (кристаллит — это частица разрушенного кристалла) без изменения ориентации кристаллов, то этот эффект называется возвратом или отдыхом. Но если изменение приводит к росту некоторых кристаллитов за счет других или образованию совершенно новых кристаллов, то говорят о рекристаллизации.

Медленная диффузия под действием постоянного напряжения при комнатной температуре вызывает появление того типа непрерывной текучести, который называется ползучестью. В меди, медных сплавах (латуни и бронзе) и серебре ползучесть с течением времени затухает. Процесс изменения переходного сопротивления в течение времени можно представить в виде графика (рис. 4).

Зависимость R от времени

Из графика, представленного на рис. 4, видно, что уменьшение Rпер. происходит до момента прекращения ползучести.

Любой диффузионный процесс, будь то возврат или рекристаллизация, всегда приводит к более равновесным положениям атомов, чем исходные, то есть к более однородным решеткам с меньшим числом упрочняющих дефектов. Другими словами, такая диффузия атомов ведет к размягчению металла. Повышение температуры увеличивает скорость диффузии и соответственно увеличивает скорость снижения твердости. После прекращения процесса ползучести переходное сопротивление контактной пары стабилизируется.

Прилипание сухих контактов, не нагреваемых электрическим током

Способность нагретых металлических деталей свариваться, если их прижать друг к другу, известна давно. Действие высокой температуры в данном случае приводит к размягчению металла, благодаря чему создаются условия образования в результате пластической деформации большой поверхности металлического контакта. Установлено, что высокая температура влияет еще и на создание энергии активации для ковалентных связей между металлическими контактами. Считают, что высокая температура, под действием которой возникает диффузия атомов между контактами, необходима для сваривания контактов.

Следует, однако, отметить, что сцепление у металлов только частично зависит от направленных насыщенных ковалентных связей. Например, у меди и медных сплавов сцепление главным образом является ненасыщенно-ковалентным и создается свободными электронами электрической проводимости. Для подтверждения сделанного нами вывода сравним чистый медный контакт и контакт между кристаллитами в медной детали. Контактная поверхность играет ту же роль, что и граничный слой. Электроны в нашем случае претерпевают очень незначительные возмущения (частичное рассеивание) на обоих граничных слоях. Они свободно преодолевают оба граничных слоя практически независимо от температуры. Электроны образуют в обоих случаях ненасыщенные металлические связи почти одинаковой прочности. Исходя из вышеизложенного можно сделать вывод, что сваривание контактов совершенно не зависит от температуры, поскольку сваривание создается ненасыщенными металлическими связями.

Сравним процесс образования контакта с процессом пластической деформации при комнатной температуре. Пластическая деформация — результат скольжения кристаллических граней, при котором образуются новые грани, то есть новые контакты между кристаллитами. Так как пластическая деформация не снижает прочности металла, то можно предположить, что вновь создаваемые связи того же вида, что и старые, и что для их образования не нужна высокая температура, то есть высокая энергия активации.

Проведенные опыты определения усилия слипания контактов в вакууме в зависимости от температуры показали, что усилие слипания контактов практически не зависит от температуры.

Результаты приведенных нами опытов противоречат установившемуся мнению о том, что образование заметного прилипания у чистых металлических контактов требует температуры в несколько сот градусов. Предполагают, что для слипания (сваривания) необходима диффузия из одного контакта в другой. Однако еще не доказано, что диффузия играет какую-либо существенную связь в прочности сварки. Фактическое увеличение металлической поверхности происходит под влиянием ползучести, которая сама по себе является результатом диффузии атомов внутри контактов и может сопровождаться диффузией через контактную поверхность. Однако это не означает, что диффузия определяет прочность слипания контактов.

Кепплер и Шлеффер установили, что максимальное прилипание у чистых золотых и платиновых контактов приближается к прочности металла. Паркер и Хэти определили пропорциональность между площадью контактной поверхности и величиной силы прилипания.

Образование контакта между чистыми металлическими поверхностями является основным процессом так называемой холодной сварки (сварки давлением), которая практикуется начиная с 1947 года. Другим примером использования эффекта холодного слипания контактов служат неполные соединения между монтажными проводами и хвостовиками контактов прямоугольного сечения — метод монтажа накруткой. Данный метод позволяет обеспечить надежный контакт провода с прямоугольным выводом контакта за счет холодного приваривания провода на острых гранях хвостовика. Проводимые на нашем заводе исследования надежности монтажа методом накрутки, после 25-летнего хранения, показали стабильное переходное сопротивление и усилие сдвига монтажного провода относительно хвостовика контакта, что позволяет считать данный способ монтажа надежным и приемлемым для широкого практического использования в РЭА.

«Дыхание» контактов

При замыкании контактов, вследствие контактного давления, на контактируемых поверхностях создаются контактные а-пятна. В результате ползучести контактное давление с течением времени уменьшается. Кроме того, некоторое перемещение контактов, обусловленное изменением их объема под влиянием колебаний температуры и вибрации, может также ослабить точки контакта. Всем этим явлениям противодействует прилипание в металлических а-пятнах. Однако если начальные контактные поверхности являются только квазиметаллическими и имеют, следовательно, малое прилипание, или если колебания температуры и вибрации достаточно велики, то эти контакты ослабляются и получают возможность «дышать», то есть затягивать воздух, находящийся в соприкосновении с поверхностями, которым предстоит замыкаться в дальнейшем. При таких условиях даже имеющиеся контактные пятна будут окисляться, несмотря на то, что обычно они находятся под давлением, и скорость окисления со временем будет увеличиваться, благодаря наличию в окисных пленках пор, через которые может проникать кислород. В дополнение к этому развивающиеся окислы могут раздвигать контакты и вызывать образование новых воздушных туннелей.

Контакты, предназначенные для длительной работы, не должны оставаться в течение долгого времени разомкнутыми, так как воздух может окислить незащищенные металлические поверхности. Если это случилось, вновь замкнутые контакты могут стать хорошими только в том случае, если произойдет образование новых металлических пятен.

Для получения воспроизводимой величины сопротивления контактов в воздухе при относительно небольших контактных усилиях необходимо предварительно подвергнуть контакты небольшой вибрации. Этот эффект назван искусственным старением контактов, поскольку тот же результат можно получить, если контакты держать в покое в течение продолжительного времени.

Искусственное старение контактов состоит в механическом разрушении некоторых пленок, которые образовываются в том случае, когда контакты находятся в разомкнутом (расчлененном) состоянии.

Контакты в замкнутом состоянии, или замкнутые после длительного времени нахождения в разомкнутом положении, можно поддерживать в хорошем состоянии с помощью присоединения их через соответствующее сопротивление к источнику, э.д.с. которого достаточна для того, чтобы начался фриттинг. Состояние фриттинга определяется по напряжению на контакте, которое непосредственно после фриттинга снижается примерно до 0,3 В и не зависит от величины последовательного сопротивления. Это нормальная величина напряжения для прекращения фриттинга у металлических контактов.

Фриттингом у металлических контактов, покрытых различными пленками, называется электрический пробой, в результате которого происходит образование токопроводящих каналов через пленку или, в более простых случаях, к разрыву пленки вокруг существующего металлического а-пятна.

Прилипание контактов, нагреваемых проходящим через них током

Сам по себе электрический ток не оказывает никакого влияния на прилипание контактов, и увеличение силы прилипания, наблюдаемое после прохождения тока, является результатом действия возросшей температуры, благодаря которой металл вокруг контакта размягчается и даже в некоторых случаях плавится. У чистых металлических контактов это ведет к увеличению поверхности металлического контакта. Известно, что чистые металлические контакты ведут себя так, будто они сварены, причем прочность сварки пропорциональна контактной поверхности.

Практический интерес представляет поведение контактов, которые вначале были покрыты пленкой потускнения. Если при замыкании контактов происходит упругая деформация, при которой расстояние между отдельными точками контактной поверхности возрастает ничтожно мало, пленка может следовать за деформацией без разрушения. Однако в местах соприкосновения контактных электродов может происходить пластическая деформация. В этом случае расстояние между атомами, лежащими на контактных поверхностях, возрастает, то есть поверхностный слой сильно растягивается по всем направлениям. Упругость пленки становится недостаточной для того, чтобы следовать за такими деформациями, и поэтому пленка разрушается, что может привести к образованию металлических а-пятен. Процесс разрушения окисной пленки впоследствии еще более увеличивается, если происходит нагрев металла электрическим током и его размягчение.

Заключение

Одной из наиболее острых проблем создания современных радиоэлектронных компонентов является научно-технический уровень конструкторско-технологических разработок. Вместе с тем нельзя сказать, что эту проблему не изучали вовсе — просто ее решение сдерживается отсутствием единой теоретической базы, единой методики оценки соответствия заданным требованиям.

В данной статье рассмотрены основополагающие понятия и закономерность теории неподвижного электрического контакта. Знание основ этой теории — необходимое условие для разработки современных высокотехнологичных наукоемких электрических соединителей. Разработчики РЭА устанавливают достаточно высокие требования к современным радиоэлектронным компонентам, например к электрическим соединителям, относительно обеспечения электрических параметров и стойкости к внешним воздействующим факторам (климатическим, биологическим, механическим, радиационным и спецфакторам).

Российские разработчики электрических соединителей сегодня практически не имеют никакой научно-технической и методической литературы по проектированию вышеуказанных изделий.

Поэтому изучение теории электрического контакта, основных ее положений, разработка на их основе технических регламентов и методик проектирования, совершенствование технологии и метрологического обеспечения производства позволит обеспечить требуемый уровень качества и надежности электрических соединителей.

Литература

  1. Хольм Р. Электрические контакты. М.: Издательство иностранной литературы, 1961.
  2. Белоусов А. К., Савченко В. С. Электрические разъемные контакты в радиоэлектронной аппаратуре. М.: Энергия, 1967.
  3. Савченко В. С. К вопросу определения норм по основным электрическим параметрам разъемных контактов. Серия «Электрические контакты». М.: Энергия, 1964.
  4. Савченко В. С. Уравнения переходного сопротивления контактов. Серия «Электрические контакты». М.: Энергия, 1967.
  5. Белоусов А. К., Савченко В. С., Якушин Ю. В. Нестабильность переходного сопротивления разъемных контактов. Серия «Электрические контакты». М.: Энергия, 1967.
  6. Левин А. П. Контакты электрических соединителей радиоэлектронной аппаратуры. М.: Советское радио, 1972.
  7. Реутт Е. К., Саксонов И. Н. Электрические контакты. Элементы теории и практики эксплуатации. М.: Военное издательство Министерства обороны СССР, 1971.
  8. Сотсков Б. С. Электрические контакты. М.: Энергия, 1967.
  9. Федоров В., Сергеев Н., Кондрашин А. Контроль и испытания в проектировании и производстве радиоэлектронных средств. М.: Техносфера, 2005.
  10. Сафонов Л. И., Сафонов А. Л. Электрические прямоугольные соединители. Рекомендации по практическому применению в РЭА // Технологии в электронной промышленности. 2007. № 5.
  11. Сафонов Л. И., Сафонов А. Л. Электрические прямоугольные соединители. Анализ физических процессов в контактах // Технологии в электронной промышленности. 2007. № 6.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *